Econometric Analysis of Games 1

Abi Adams

HT 2017
Recap

Aim: provide an introduction to incomplete models and partial identification in the context of discrete games

1. Coherence & Completeness
2. Basic Framework
3. Pooling Outcomes
4. Large Support
5. Partial Identification
6. Adding Structure
Recap

► Last lecture discussed the rank and order conditions that characterise when linear simultaneous systems are point identified.

► This week, we will review identification results in the econometric analysis of discrete games, which are also simultaneous systems

► The existence of multiple equilibria results in additional identification issues

► After discussing games of complete information, we will return to multiplicity in the context of social interactions
Completeness & Coherence

- Structural model: a set of structural equations and a distribution between observed and unobserved explanatory variables specified by an economic theory

\[h(y, X, \varepsilon) = 0 \]

with \(\varepsilon \in \Omega \)

- The model is coherent if for each \(\varepsilon \in \Omega \) there exists at least one value of \(y \) that satisfies the structural equations

- The model is complete if for each \(\varepsilon \in \Omega \) there exists at most one value of \(y \) that satisfies the structural equations

- With a complete and coherent model, a unique reduced form is guaranteed
Completeness & Coherence

- Incoherent and incomplete models can arise in simultaneous systems
- We start with a simple abstract example, and then will consider these issues in the context of an entry game
- Consider the following simultaneous system

\[
\begin{align*}
y_1 &= l(y_2 + \epsilon_1 \geq 0) \\
y_2 &= \theta y_1 + \epsilon_2
\end{align*}
\]
We have that

$$y_1 = l(\theta y_1 + \epsilon_1 + \epsilon_2 \geq 0)$$ \hspace{1cm} (3)$$

With unrestricted errors, the model is incomplete: let $-\theta \leq \epsilon_1 + \epsilon_2 < 0$:

$$y_1 = l(\theta y_1 + \epsilon_1 + \epsilon_2 \geq 0)$$

$$\epsilon_1 + \epsilon_2 \geq 0 \rightarrow y_1 = 0$$

$$\theta + \epsilon_1 + \epsilon_2 \geq 0 \rightarrow y_1 = 1$$ \hspace{1cm} (4)$$
With unrestricted errors, the model is incoherent: let $0 \leq \epsilon_1 + \epsilon_2 < -\theta$:

\[
y_1 = I(\theta y_1 + \epsilon_1 + \epsilon_2 \geq 0)
\]

\[
\epsilon_1 + \epsilon_2 \geq 0 \rightarrow y_1 \neq 0
\]

\[
\theta + \epsilon_1 + \epsilon_2 < 0 \rightarrow y_1 \neq 1
\]
Outline

1. Coherence & Completeness
2. Basic Framework
3. Pooling Outcomes
4. Large Support
5. Partial Identification
6. Adding Structure
Entry Games
Entry Games

- Large literature on the estimation on binary games in the empirical IO set-up
- How to measure the competitiveness of a market and the toughness of competition?
- Bresnahan & Reiss (1991): don’t need to price/quantity/cost data but can infer from information on equilibrium market structure
Entry Games: Data

- A firm’s decision to enter depends on its profit, which depends on whether the other firm entered the market.

- Let profits be given by:

$$\pi_i = x_i \beta + \Delta_i y_j + \epsilon_i$$

for $i = 1, 2$

- The distribution of $\epsilon \equiv (\epsilon_1, \epsilon_2)$ is given by (known) F, with mean normalised to zero and variances to 1.

- Start by assuming complete information: realisations of x and ϵ observed by all players.
Entry Games: Data

- Similar set-up to Ciliberto & Tamer’s (2009) analysis of the airline industry
- Each market is a particular route, the firms being different airlines
- x_i gives the various market and firm specific variables that affect demand (e.g. population size, income &c) and costs for firms
- Linearity relaxed in some specifications, but additive separability of observables and unobservables typically assumed
Payoff Matrix

\[
y_i^* = x_i \beta + \Delta_i y_j + \epsilon_i \\
y_i = I(y_i^* \geq 0)
\]

<table>
<thead>
<tr>
<th></th>
<th>Player 1</th>
<th>Player 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0, 0</td>
<td>0, (x_2 \beta_2 + \epsilon_2)</td>
</tr>
<tr>
<td>1</td>
<td>(x_1 \beta_1 + \epsilon_1, 0)</td>
<td>(x_1 \beta_1 + \Delta_1 + \epsilon_1, x_2 \beta_2 + \Delta_2 + \epsilon_2)</td>
</tr>
</tbody>
</table>

- Nash equilibrium concept
Payoff Matrix: $\Delta_i < 0$
Incomplete

- For certain values of the error term, the model predicts two possible solutions.

- Absent a rule for equilibrium selection, the model is incomplete — cannot write down uniquely determined likelihood function because we cannot assign separate probabilities to (0,1) and (1,0).

- Structural parameters often under-identified from entry data.

- An equilibrium selection mechanism, λ, specifies which equilibria is selected with which probability.
Incomplete

- How can we deal with this?
 - Find a coarser unique prediction — e.g. focus on number of entrants — useful in a symmetric world but doesn’t always work (Bresnahan and Reiss, 1991; Berry, 1992)
 - Exclusion & large support assumptions (Tamer, 2003)
 - Complete the model by assuming an equilibrium selection rule or impose more structure on the game to obtain a unique equilibrium
 - Sacrifice point estimates and only find bounds on parameters
Outline

1. Coherence & Completeness
2. Basic Framework
3.Pooling Outcomes
4. Large Support
5. Partial Identification
6. Adding Structure
Pooling Multiple Equilibria Outcomes

- A common strategy taken is to aggregate the monopoly outcomes
- Transform model from one that explains each entrants strategy to one that predicts the number of entrants: $N = 0, 1, 2$
- Essentially turns the problem into an ordered discrete choice model
- Multiplicity not necessarily an impediment to analysis — here some quantities of interest are invariant across equilibria
Pooling Multiple Equilibria Outcomes

- Likelihood function would then include the probability statements

\[
Pr(N = 0 | x) = Pr(x_1 \beta_1 + \epsilon_1 < 0, x_2 \beta_2 + \epsilon_2) = F_{\epsilon_1, \epsilon_2}(-x_1 \beta_1, -x_2 \beta_2)
\]

\[
Pr(N = 2 | x) = Pr(x_1 \beta_1 + \Delta_1 + \epsilon_1 < 0, x_2 \beta_2 + \Delta_2 + \epsilon_2) = F_{\epsilon_1, \epsilon_2}(-x_1 \beta_1, -x_2 \beta_2)
\]

\[
Pr(N = 1 | x) = 1 - Pr(N = 0 | x) - Pr(N = 2 | x)
\]

(8)

- Joint distribution of \(\Delta_i \) determines the specific functional form for these probability statements
Pooling Multiple Equilibria Outcomes

- However, lose information about firm heterogeneities unless firms are symmetric

- We then have

\[
\begin{align*}
Pr(N = 0|x) &= Pr(\epsilon_1 < -x\beta) \\
Pr(N = 1|x) &= Pr(-x\beta < \epsilon < -x\beta - \Delta) \\
Pr(N = 2|x) &= Pr(-x\beta - \Delta < \epsilon)
\end{align*}
\]

- With \(\epsilon \sim N(0, 1) \) we get a very simple ordered probit model
Pooling Multiple Equilibria Outcomes

- While convenient, this strategy imposes strong restrictions on firm level heterogeneity
- Typically want to allow for firms to asymmetric impacts on one another
Outline

1. Coherence & Completeness
2. Basic Framework
3. Pooling Outcomes
4. Large Support
5. Partial Identification
6. Adding Structure
Large Support

- Uses similar ideas to those we have discussed in the context of special regressors and identification of simultaneous systems

- Intuition: find a regressor for which the actions of all but one player are dictated by dominant strategies — turn the problem into a discrete choice problem by the single agent who does not play dominant strategies

- For $i = 1$ or $i = 2$, there exists a regressor with $\beta_{ik} \neq 0$ that is excluded from the other firm’s covariates and has everywhere positive density
Large Support

- Point identification of \((\beta_1, \beta_2, \Delta_1, \Delta_2)\) then guaranteed if \(x_1\) and \(x_2\) have full column rank

- Can find extreme values for \(x_{ik}\) such that only unique equilibria in pure strategies are realised, e.g. as \(x_{1k} \to -\infty\):

\[
Pr(\epsilon_1 < -x_1 \beta) \to 1
\]

\[
Pr(\epsilon_1 < -x_1 - \Delta_1 \beta) \to 1
\]

- Let \(x_2^*\) be such that:

\[
x_2^* \beta_2 \neq x_2^* b_2
\]

which is guaranteed by the full rank condition on \(x_2\)
We then have that, as $x_{1k} \to \infty$

$$Pr((0, 0)|x) = Pr(\epsilon_1 < -x_1 \beta_1, \epsilon_2 < -x_2^* \beta_2)$$
$$\approx Pr(\epsilon_2 < -x_2^* \beta_2)$$
$$\not\approx Pr(\epsilon_2 < -x_2^* b_2)$$

which implies that β_2 is identified
Large Support

▶ Let x_1^* be such that:

$$x_1^* \beta_1 \neq x_1^* b_1 \quad (13)$$

which is guaranteed by the full rank condition on x_1

▶ We then have that

$$Pr((0, 0) | x) = Pr(\epsilon_1 < -x_1^* \beta_1, \epsilon_2 < -x_2 \beta_2) \neq Pr(\epsilon_1 < -x_1^* b_1, \epsilon_2 < -x_2 \beta_2) \quad (14)$$

which implies that β_1 is identified

▶ Could also introduce a separate large support regressor for firm 2
Identification at Infinity

- This strategy is often called **identification at infinity** — using independent variation in one regressor while driving another to take extreme values on its support identifies the parameters.

- Used in many different applications — Heckman (1990) &c

- However, note that there are important implications for inference: this will lead to asymptotic convergence rates that are slower than parametric rates as the sample size (i.e. number of games) increases (see Kahn & Tamer (2010); Bajari et al (2011))
Outline

1. Coherence & Completeness
2. Basic Framework
3. Pooling Outcomes
4. Large Support
5. Partial Identification
6. Adding Structure
Partial Identification

- Typically covariates’ support is not rich enough to admit a strategy based on Tamer (2003)
- Can instead rely on partial information and use bounds for estimation — while a model may not make exact predictions, it may still meaningfully restrict the range of possible outcomes
- Advocated by, e.g., Manski (1995)
- These results can be useful for testing particular hypotheses or illustrating the range of possible outcomes
Partial Identification

- Given that the model is incomplete, the probability of outcome \((0, 1)\) and \((1, 0)\) cannot be written as a function of the structural parameters

- The model instead provides upper and lower bounds on these probabilities
Bounds

\[Pr((0, 1)|x) \geq P_{L,01}(\beta, \triangle) \]

\[= Pr(\epsilon_1 < -x_1 \beta_1, -x_2 \beta_2 < \epsilon_2) \]

\[+ Pr(-x_1 \beta_1 \leq \epsilon_1 < -x_1 \beta_1 - \triangle_1, -x_2 \beta_2 - \triangle_2 < \epsilon_2) \]

(15)
Bounds

\[Pr((0, 1) \mid x) \geq P_{L,01}(\beta, \Delta) \]

\[= Pr(\epsilon_1 < -x_1\beta_1, -x_2\beta_2 < \epsilon_2) \]

\[+ Pr(-x_1\beta_1 \leq \epsilon_1 < -x_1\beta_1 - \Delta_1, -x_2\beta_2 - \Delta_2 < \epsilon_2) \]

(16)
Bounds

\[Pr((0, 1)|x) \geq P_{L,01}(\beta, \Delta) \]

\[= Pr(\epsilon_1 < -x_1\beta_1, -x_2\beta_2 < \epsilon_2) \]

\[+ Pr(-x_1\beta_1 \leq \epsilon_1 < -x_1\beta_1 - \Delta_1, -x_2\beta_2 - \Delta_2 < \epsilon_2) \]

(17)
Bounds

\[
Pr((0, 1) | x) \geq P_{L,01}(\beta, \triangle) \\
= Pr(\epsilon_1 < -x_1 \beta_1, -x_2 \beta_2 < \epsilon_2) \\
+ Pr(-x_1 \beta_1 \leq \epsilon_1 < -x_1 \beta_1 - \triangle_1, -x_2 \beta_2 - \triangle_2 < \epsilon_2)
\]

(18)
Bounds

\[Pr((0, 1) \mid x) \geq P_{L,01}(\beta, \triangle) \]

\[= Pr(\epsilon_1 < -x_1 \beta_1, -x_2 \beta_2 < \epsilon_2) \]

\[+ Pr(-x_1 \beta_1 \leq \epsilon_1 < -x_1 \beta_1 - \triangle_1, -x_2 \beta_2 - \triangle_2 < \epsilon_2) \]

(19)
Bounds

\[Pr((0, 1)|x) \leq P_{U,01}(\beta, \Delta) \]

\[= Pr \left(\begin{array}{l}
-x_1\beta_1 \leq \epsilon_1 < -x_1\beta_1 - \Delta_1, \\
-x_2\beta_2 < \epsilon_2 < -x_2\beta_2 - \Delta_2
\end{array} \right) + P_{L,01} \]

(20)
Bounds

\[
Pr((0, 1)|x) \leq P_{U,01}(\beta, \Delta) = Pr \left(\begin{array}{l}
-x_1/\beta_1 \leq \epsilon_1 < -x_1/\beta_1 - \Delta_1, \\
-x_2/\beta_2 < \epsilon_2 < -x_2/\beta_2 - \Delta_2,
\end{array} \right) + P_{L,01}
\]
Partial Identification

- Can derive similar expressions for the probabilities of other outcomes

- The information about the parameters can then be represented as:

\[
\begin{pmatrix}
P_{L,00}(\theta) \\
P_{L,01}(\theta) \\
P_{L,10}(\theta) \\
P_{L,11}(\theta)
\end{pmatrix} \leq \begin{pmatrix}
Pr((0, 0)|x) \\
Pr((0, 1)|x) \\
Pr((1, 0)|x) \\
Pr((1, 1)|x)
\end{pmatrix} \leq \begin{pmatrix}
P_{U,00}(\theta) \\
P_{U,01}(\theta) \\
P_{U,10}(\theta) \\
P_{U,11}(\theta)
\end{pmatrix}
\]

- The identified set, \(\Theta_I \), is the set of all parameters that satisfy these inequalities
Example: Ciliberto & Tamer (2009)

- Interested in measuring competitive pressures in the airline industry, i.e. the impact on profit of a firm entering a particular market.

- Want to allow for heterogeneity across firms — i.e. the entry decision of American Airlines has a different effect on the profit of its competitors than the entry of a low cost airline.

- Some important policy questions regards rules on airport presence on number of routes served &c.
Example: Ciliberto & Tamer (2009)

- Each observation is a route served between two airports.
- Cross section study and thus assume firms are in long run equilibrium.
- Firm profit function given by:

\[
y_{im}^* = S_m \alpha_i + Z_{im} \beta_i + W_{im} \gamma_i + \sum_{j \neq i} \theta_j^i y_{jm} + \sum_{j \neq i} Z_{jm} \theta_j^i y_{jm} + \epsilon_{im}
\]

(23)

- S is a vector of common market characteristics.
- Z is a matrix of firm characteristics that enter into the profit functions of all firms.
- W are firm specific characteristics such as cost variables.
Example: Ciliberto & Tamer (2009)

- Have the (more complicated!) set of moment equalities

\[
\begin{pmatrix}
P_{L,1}(\theta) \\
\vdots \\
P_{L,2^N}(\theta)
\end{pmatrix}
\leq
\begin{pmatrix}
Pr(y^1|x) \\
\vdots \\
Pr(y^{2^N}|x)
\end{pmatrix}
\leq
\begin{pmatrix}
P_{U,1}(\theta) \\
\vdots \\
P_{U,2^N}(\theta)
\end{pmatrix}
\]

(24)
Example: Ciliberto & Tamer (2009)

The estimator uses the following objective function

\[
Q(\theta) = \int \left[\| (\Pr(y|X) - P_L(X, \theta))_\cdot \| + \| (\Pr(y|X) - P_H(X, \theta))_+ \| \right] dF_x
\]

where

\[
(A)_- = \begin{bmatrix}
a_11(a_1 \leq 0) \\
\vdots \\
a_{2N}1(a_{2N} \leq 0)
\end{bmatrix}
\]

and \((A_+)\) defined similarly.
Example: Ciliberto & Tamer (2009)

- Note that $Q(\theta) \geq 0$ and $Q(\theta) = 0$ iff $\theta \in \Theta_I$

- To estimate Θ_I, take the sample analog of $Q(\cdot)$

$$Q_N(\theta) = \frac{1}{N} \sum_{m} \left[|| (P_n(X_m) - P_L(X_m, \theta))_+ || + || (P_n(X_m) - P_H(X_m, \theta))_+ || \right]$$

(27)

where $P_n(X_m)$ can be estimated non-parametrically and P_L and P_H are computed via simulation.
Example: Ciliberto & Tamer (2009)

- Unless the number of firms is very small, the upper and lower bound probabilities do not have a convenient closed form.

- Common problem with more complicated models: likelihood or moment inequalities do not have a closed form that can adapt standard Maximum Likelihood or GMM methods for.

- Proceed by **simulation**: calculate an upper and lower bound for each equilibrium probability for every X for a particular guess of the parameter values.
Simulation Procedure

1. Draw R simulations of the firm unobservables, ϵ^r — these draws and stored and held fixed throughout the optimisation procedure
 - NB can allow for correlation in these draws if each firm’s draw is random normal by transforming the error terms using the Cholesky Decomposition of the covariance matrix

2. For a given X, a particular draw of the error term, ϵ^r and an initial guess of the parameter vector, θ, calculate the vector of firm’s profits for a particular set of entry decisions, y^j

3. If each firm is earning non-negative profits, then the outcome y^j is an equilibrium
Simulation Procedure

4. If this equilibrium is unique (for no other y' is it true that all firms profits are positive), then add $\frac{1}{R}$ to the lower and upper bound for this outcome.

5. If this equilibrium is not unique, then add $\frac{1}{R}$ to the upper bound only.

6. Repeat steps 1-5 for each X_m and ϵ^r, $r = 1, \ldots, R$.

7. Calculate the objective simulation estimates of P_L and P_H.

8. Repeat steps 1-7 as search for the value of θ that minimises Q_N.

Abi Adams

TBEA
Data

- 2001 Airline Origin and Destination Survey
- Markets defined as trips between airports — data set includes 2742 markets
- Focus on American, Delta, United, Southwest, ‘Medium’ Airlines and Low Cost Carriers
Results Summary

- Heterogeneity in profit functions
- Competitive effects of large and low-cost airlines are different
- Competitive effects of an airline increasing in its airport presence
Results

EMPIRICAL RESULTS

<table>
<thead>
<tr>
<th></th>
<th>Berry (1992)</th>
<th>Heterogeneous Interaction</th>
<th>Heterogeneous Control</th>
<th>Firm-to-Firm Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive fixed effect</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>[−14.151, −10.581]</td>
<td>[−10.914, −8.822]</td>
<td>[−9.510, −8.460]</td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>[−10.037, −8.631]</td>
<td>[−9.138, −8.279]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>[−10.101, −4.938]</td>
<td>[−9.951, −5.285]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>[−11.489, −9.414]</td>
<td>[−9.539, −8.713]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>[−19.623, −14.578]</td>
<td>[−19.385, −13.833]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN</td>
<td>[−12.912, −10.969]</td>
<td>[−10.751, −9.29]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAR on LAR</td>
<td></td>
<td></td>
<td></td>
<td>[−9.086, −8.389]</td>
</tr>
<tr>
<td>LAR on LCC</td>
<td></td>
<td></td>
<td></td>
<td>[−10.294, −9.025]</td>
</tr>
<tr>
<td>LAR on WN</td>
<td></td>
<td></td>
<td></td>
<td>[−22.842, −9.547]</td>
</tr>
<tr>
<td>LCC on LAR</td>
<td></td>
<td></td>
<td></td>
<td>[−9.093, −7.887]</td>
</tr>
<tr>
<td>WN on LAR</td>
<td></td>
<td></td>
<td></td>
<td>[−13.738, −7.848]</td>
</tr>
<tr>
<td>LCC on WN</td>
<td></td>
<td></td>
<td></td>
<td>[−15.950, −11.608]</td>
</tr>
<tr>
<td>Airport presence</td>
<td>[3.052, 5.087]</td>
<td>[11.262, 14.296]</td>
<td>[10.925, 12.541]</td>
<td>[9.215, 10.436]</td>
</tr>
<tr>
<td>Cost</td>
<td>[−0.714, 0.024]</td>
<td>[−1.197, −0.333]</td>
<td>[−1.036, −0.373]</td>
<td>[−1.060, −0.508]</td>
</tr>
<tr>
<td>Wright</td>
<td>[−20.526, −8.612]</td>
<td>[−14.738, −12.556]</td>
<td>[−12.211, −10.503]</td>
<td>[−12.092, −10.602]</td>
</tr>
<tr>
<td>Dallas</td>
<td>[−6.890, −1.087]</td>
<td>[−1.186, 0.421]</td>
<td>[−1.014, 0.324]</td>
<td>[−0.975, 0.224]</td>
</tr>
<tr>
<td>Market size</td>
<td>[0.972, 2.247]</td>
<td>[0.532, 1.245]</td>
<td>[0.372, 0.960]</td>
<td>[0.044, 0.310]</td>
</tr>
<tr>
<td>WN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continues)
Results

<table>
<thead>
<tr>
<th>Complete Entry Pooling Large Support Partial</th>
</tr>
</thead>
</table>

TABLE III—Continued

<table>
<thead>
<tr>
<th></th>
<th>Berry (1992)</th>
<th>Heterogeneous Interaction</th>
<th>Heterogeneous Control</th>
<th>Firm-to-Firm Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market distance</td>
<td>[4.356, 7.046]</td>
<td>[0.106, 1.002]</td>
<td>[0.062, 0.627]</td>
<td>[-0.057, 0.486]</td>
</tr>
<tr>
<td>WN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close airport</td>
<td>[4.022, 9.831]</td>
<td>[-0.769, 2.070]</td>
<td>[-0.289, 1.363]</td>
<td>[-1.399, -0.196]</td>
</tr>
<tr>
<td>WN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. center distance</td>
<td>[1.452, 3.330]</td>
<td>[-0.932, -0.062]</td>
<td>[-0.275, 0.356]</td>
<td>[-0.606, 0.242]</td>
</tr>
<tr>
<td>WN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per capita income</td>
<td>[0.568, 2.623]</td>
<td>[-0.080, 1.010]</td>
<td>[0.286, 0.829]</td>
<td>[0.272, 1.073]</td>
</tr>
<tr>
<td>Income growth rate</td>
<td>[0.370, 1.003]</td>
<td>[0.078, 0.360]</td>
<td>[0.086, 0.331]</td>
<td>[0.094, 0.342]</td>
</tr>
<tr>
<td>Constant</td>
<td>[-13.840, -7.796]</td>
<td>[-1.362, 2.431]</td>
<td>[-1.067, -0.191]</td>
<td>[0.381, 2.712]</td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function value</td>
<td>1756.2</td>
<td>1644.1</td>
<td>1627</td>
<td>1658.3</td>
</tr>
<tr>
<td>Multiple in identity</td>
<td>0.837</td>
<td>0.951</td>
<td>0.943</td>
<td>0.969</td>
</tr>
<tr>
<td>Multiple in number</td>
<td>0</td>
<td>0.523</td>
<td>0.532</td>
<td>0.536</td>
</tr>
<tr>
<td>Correctly predicted</td>
<td>0.328</td>
<td>0.326</td>
<td>0.325</td>
<td>0.308</td>
</tr>
</tbody>
</table>
Results

Variable Competitive Effects

<table>
<thead>
<tr>
<th></th>
<th>Independent Unobs</th>
<th>Variance-Covariance</th>
<th>Only Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>[−6.349, −3.723]</td>
<td>[−4.580, −3.813]</td>
<td>[−10.671, −8.386]</td>
</tr>
<tr>
<td>MA</td>
<td>[−9.998, −8.770]</td>
<td>[−7.476, −6.922]</td>
<td>[−11.906, −10.423]</td>
</tr>
<tr>
<td>WN</td>
<td>[−9.351, −7.876]</td>
<td>[−6.570, −5.970]</td>
<td>[−12.484, −10.614]</td>
</tr>
<tr>
<td>Variable effect</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>[−5.792, −4.545]</td>
<td>[−4.675, −3.854]</td>
<td></td>
</tr>
<tr>
<td>DL</td>
<td>[−3.812, −2.757]</td>
<td>[−3.628, −3.030]</td>
<td></td>
</tr>
<tr>
<td>UA</td>
<td>[−10.726, −5.645]</td>
<td>[−8.219, −7.932]</td>
<td></td>
</tr>
<tr>
<td>MA</td>
<td>[−6.861, −4.898]</td>
<td>[−7.639, −6.557]</td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>[9.214, 13.344]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN</td>
<td>[−10.319, −8.256]</td>
<td>[−11.345, −10.566]</td>
<td></td>
</tr>
<tr>
<td>Airport presence</td>
<td>[14.578, 16.145]</td>
<td>[10.665, 11.260]</td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA</td>
<td>[−1.249, −0.501]</td>
<td>[−0.387, −0.119]</td>
<td>[−0.791, 0.024]</td>
</tr>
<tr>
<td>DL</td>
<td></td>
<td></td>
<td>[−1.236, 0.069]</td>
</tr>
<tr>
<td>UA</td>
<td></td>
<td></td>
<td>[−1.396, −0.117]</td>
</tr>
<tr>
<td>MA</td>
<td></td>
<td></td>
<td>[−1.712, 0.072]</td>
</tr>
<tr>
<td>LCC</td>
<td></td>
<td></td>
<td>[−17.786, 1.045]</td>
</tr>
<tr>
<td>WN</td>
<td></td>
<td></td>
<td>[−0.802, 0.169]</td>
</tr>
<tr>
<td>Wright</td>
<td>[−17.800, −16.346]</td>
<td>[−16.781, −15.357]</td>
<td>[−14.284, −10.479]</td>
</tr>
<tr>
<td>Dallas</td>
<td>[0.368, 1.323]</td>
<td>[0.839, 1.132]</td>
<td>[−5.517, −2.095]</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Entry</th>
<th>Pooling</th>
<th>Large Support</th>
<th>Partial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market size</td>
<td>[0.230, 0.535]</td>
<td>[0.260, 0.612]</td>
<td>[0.953, 1.159]</td>
<td>[1.946, 2.435]</td>
<td></td>
</tr>
<tr>
<td>WN</td>
<td>[0.260, 0.612]</td>
<td>[0.260, 0.612]</td>
<td>[0.823, 1.068]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>[−0.432, 0.507]</td>
<td>[−0.432, 0.507]</td>
<td>[0.823, 1.068]</td>
<td>[1.946, 2.435]</td>
<td></td>
</tr>
<tr>
<td>Market distance</td>
<td>[0.009, 0.645]</td>
<td>[0.316, 0.724]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W N</td>
<td>[−3.091, −1.819]</td>
<td>[−2.036, −1.395]</td>
<td>[−0.039, 1.406]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>[−1.363, 1.926]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close airport</td>
<td>[−0.373, 0.422]</td>
<td>[0.400, 1.433]</td>
<td>[3.224, 6.717]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN</td>
<td>[1.164, 3.387]</td>
<td>[2.078, 2.450]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>[1.059, 3.108]</td>
<td>[1.875, 2.243]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. center distance</td>
<td>[−9.271, 0.506]</td>
<td>[0.015, 0.696]</td>
<td>[2.346, 3.339]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WN</td>
<td>[0.276, 1.008]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>[−0.930, 0.367]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per capita income</td>
<td>[0.929, 1.287]</td>
<td>[0.824, 1.052]</td>
<td>[1.416, 2.307]</td>
<td>[1.435, 2.092]</td>
<td></td>
</tr>
<tr>
<td>Income growth rate</td>
<td>[0.136, 0.331]</td>
<td>[0.151, 0.316]</td>
<td></td>
<td>[1.435, 2.092]</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>[−0.522, 0.163]</td>
<td>[−0.827, −0.523]</td>
<td>[−12.404, −10.116]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MA_m</td>
<td>[0.064, 1.448]</td>
<td></td>
<td></td>
<td>[1.416, 2.307]</td>
<td></td>
</tr>
<tr>
<td>LCC</td>
<td>[0.279, 0.747]</td>
<td>[−0.233, 0.454]</td>
<td>[1.416, 2.307]</td>
<td>[1.435, 2.092]</td>
<td></td>
</tr>
<tr>
<td>WN</td>
<td>[−1.528, −0.180]</td>
<td>[1.401, 2.151]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Function value</td>
<td>1616</td>
<td>1575</td>
<td>1679</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple in identity</td>
<td>0.9538</td>
<td>0.9223</td>
<td>0.9606</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple in number</td>
<td>0.6527</td>
<td>0.3473</td>
<td>0.0728</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Correctly predicted</td>
<td>0.3461</td>
<td>0.3375</td>
<td>0.3011</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusion

- To finish, note that many other economic models with similar structures

- (Especially!) with strategic interactions, need to consider if your model is complete and consider the implications for identification

- Identification can be achieved through a number of strategies; which one is preferable will depend on the context and data to hand